Skip to main content
Version: 0.1.x

Distance

Utility functions for normalized distance between arrays with numba decorators.

def hamming(...)

def hamming(u: npt.NDArray, v: npt.NDArray) -> np.float64:

The function to calculate the normalized Hamming distance between two points.

((x1x2)+(y1y2)+...+(ynyn))/n((x₁ ≠ x₂) + (y₁ ≠ y₂) + ... + (yn ≠ yn)) / n

Parameters:

  • u (npt.NDArray): Coordinates of the first point.
  • v (npt.NDArray): Coordinates of the second point.

Returns:

  • Distance (float) between the two points.

def euclidean(...)

def euclidean(u: npt.NDArray[np.float64], v: npt.NDArray[np.float64]) -> np.float64:

Function to calculate the normalized Euclidean distance between two points.

((x1x2)2+(y1y2)2+...+(ynyn)2)√( (x₁ – x₂)² + (y₁ – y₂)² + ... + (yn – yn)²)

Parameters:

  • u (npt.NDArray): Coordinates of the first point.
  • v (npt.NDArray): Coordinates of the second point.

Returns:

  • Distance (float) between the two points.

def cityblock(...)

def cityblock(u: npt.NDArray[np.float64], v: npt.NDArray[np.float64]) -> np.float64:

Function to calculate the normalized Manhattan distance between two points.

(x1x2+y1y2+...+ynyn)/n(|x₁ – x₂| + |y₁ – y₂| + ... + |yn – yn|) / n

Parameters:

  • u (npt.NDArray): Coordinates of the first point.
  • v (npt.NDArray): Coordinates of the second point.

Returns:

  • Distance (float) between the two points.

def minkowski(...)

def minkowski(u: npt.NDArray[np.float64], v: npt.NDArray[np.float64], p: float = 2.0):

Function to calculate the normalized Minkowski distance between two points.

((X1Y1p+X2Y2p+...+XnYnp)1/p)/n(( |X₁ – Y₁|p + |X₂ – Y₂|p + ... + |Xn – Yn|p) ¹/ₚ) / n

Parameters:

  • u (npt.NDArray): Coordinates of the first point.
  • v (npt.NDArray): Coordinates of the second point.
  • p float: The p parameter defines the type of distance to be calculated:
    • p = 1: Manhattan distance — sum of absolute differences.
    • p = 2: Euclidean distance — sum of squared differences (square root).
    • p > 2: Minkowski distance with an increasing penalty as p increases.

Returns:

  • Distance (float) between the two points.

def compute_metric_distance(...)

def compute_metric_distance(
u: npt.NDArray[np.float64],
v: npt.NDArray[np.float64],
metric: int,
p: np.float64 = 2.0
) -> np.float64:

Function to calculate the distance between two points by the chosen metric.

Parameters:

  • u (npt.NDArray): Coordinates of the first point.
  • v (npt.NDArray): Coordinates of the second point.
  • metric (int): Distance metric to be used. Available options: [0 (Euclidean), 1 (Manhattan), 2 (Minkowski)]
  • p (float): Parameter for the Minkowski distance (used only if metric is "minkowski").

Returns:

  • Distance (double) between the two points with the selected metric.

def min_distance_to_class_vectors(...)

def min_distance_to_class_vectors(
x_class: npt.NDArray,
vector_x: npt.NDArray,
metric: int,
p: float = 2.0
) -> float:

Calculates the minimum distance between an input vector and the vectors of a class.

Parameters:

  • x_class (npt.NDArray): Array containing the class vectors to be compared with the input vector. Expected shape: (n_samples, n_features).
  • vector_x (npt.NDArray): Vector to be compared with the class vectors. Expected shape: (n_features,).
  • metric (int): Distance metric to be used. Available options: [0 (Euclidean), 1 (Manhattan), 2 (Minkowski)]
  • p (float): Parameter for the Minkowski distance (used only if metric is "minkowski").

Returns:

  • float: The minimum distance calculated between the input vector and the class vectors.
  • Returns -1.0 if the input dimensions are incompatible.

def get_metric_code(...)

def get_metric_code(metric: str) -> int:

Returns the numeric code associated with a distance metric.

Parameters:

  • metric (str): Name of the metric. Can be "euclidean", "manhattan", "minkowski" or "hamming".

Raises

  • ValueError: If the metric provided is not supported

Returns:

  • int: Numeric code corresponding to the metric.